David Rees

David graduated from UCL in 2018 with a MEng in Mechanical Engineering. His masters project involved the full design and manufacture of an unmanned aircraft system for delivery of humanitarian aid. After graduating David worked as a class instructor for STEM and architecture children’s classes, before returning to UCL to start a PhD.

In 2012, David received an Arkwright Engineering Scholarship and is now a mentor for current Arkwright scholars. He is also a member of the Communication and Outreach Committee for the MAPP EPSRC Future Manufacturing Hub.

David Rees

Research Interests

David's research interests focus on the understanding the solidification behaviour of nickel-based superalloys during additive manufacturing using in situ synchrotron imaging.

Additive Manufacturing (AM) is  technology that differs from conventional manufacturing processes in that material is consolidated to form the desired geometry rather than being subtracted from a bulk. AM processes are of interest to manufacturers as they offer unparalleled design freedom, further digitisation of manufacturing, and reduce waste. However, the solidification rates during AM are orders of magnitude faster than traditional processes, and hence there is a lack of microstructural data, including porosity and solidification cracking. This data is required for certification of safety-critical components such as gas turbine powerplants, turbofan engines, and  highspeed airframes.

This project will involve in situ synchrotron X-ray imaging experiments to gain new insights into solidification phenomena during the powder bed fusion (PBF) and directed energy deposition (DED) AM processes; investigating and quantifying  the solidification behaviour of a series of Ni superalloys under a range of processing conditions. The experimental data will incorporated into computational process models.

 

 

The project is in collaboration with Rolls-Royce plc. and supported by the MAPP EPSRC Future Manufacturing Hub.